Monotonicity of the zeros of orthogonal polynomials through related measures
نویسندگان
چکیده
Relation between two sequences of orthogonal polynomials, where the associated measures are related to each other by a first degree polynomial multiplication (or division), is well known. We use this relation to study the monotonicity properties of the zeros of generalized orthogonal polynomials. As examples, the Jacobi, Laguerre and Charlier polynomials are considered. 2005 Elsevier Inc. All rights reserved.
منابع مشابه
Monotonicity of Zeros of Orthogonal Laurent Polynomials
Monotonicity of zeros of orthogonal Laurent polynomials associated with a strong distribution with respect to a parameter is discussed. A natural analog of a classical result of A. Markov is proved. Recent results of Ismail and Muldoon based on the Hellman-Feynman theorem are also extended to a monotonicity criterion for zeros of Laurent polynomials. Results concerning the behaviour of extreme ...
متن کاملApplications of the monotonicity of extremal zeros of orthogonal polynomials in interlacing and optimization problems
We investigate monotonicity properties of extremal zeros of orthogonal polynomials depending on a parameter. Using a functional analysis method we prove the monotonicity of extreme zeros of associated Jacobi, associated Gegenbauer and q-Meixner-Pollaczek polynomials. We show how these results can be applied to prove interlacing of zeros of orthogonal polynomials with shifted parameters and to d...
متن کاملA Discrete Approach to Monotonicity of Zeros of Orthogonal Polynomials
We study the monotonicity with respect to a parameter of zeros of orthogonal polynomials. Our method uses the tridiagonal (Jacobi) matrices arising from the three-term recurrence relation for the polynomials. We obtain new results on monotonicity of zeros of associated Laguerre, Al-Salam-Carlitz, Meixner and PoJlaczek polynomials. We also derive inequalities for the zeros of the Al-Salam-Carlit...
متن کاملDifferential Equations and Zeros of Orthogonal Polynomials
This is a survey of some methods for finding inequalities, monotonicity properties and approximations for zeros of orthogonal polynomials and related functions. The methods are based on the use of the ordinary differential equations satisfied by the functions. Based on a talk presented at the NATO Advanced Study Institute on Orthogonal Polynomials and their Applications, Ohio State University, ...
متن کاملMonotonicity and Asymptotic of Zeros of Laguerre-sobolev-type Orthogonal Polynomials of Higher Order Derivatives
In this paper we analyze the location of zeros of polynomials orthogonal with respect to the inner product
متن کامل